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Abstract. The growth of discontinuities in a very hot relativistic plasma at temperatures of 
lo5 K or above in intense magnetic fields has been studied. The effects of radiation pressure 
and radiation energy density have been taken into account, while the profiles structured by 
the radiant heat transfer are assumed to be embedded in the discontinuities. The modes of 
propagation of weak MHD waves have been determined. The fundamental growth equation 
governing the growth and decay of weak wavefronts propagating into a hot relativistic 
plasma in the presence of transverse magnetic fields has been obtained and solved. The 
relativistic results are found to be in full agreement with the earlier results of classical 
magnetohydrodynamics in the Newtonian limit. The curvature effects on the global 
behaviour of wave amplitude have been investigated and a finite time is determined for the 
formation of caustics due to focusing. The problem of the breakdown of weak waves and the 
consequent formation of shock waves has also been completely solved and a finite critical 
time t, is determined when a weak wave will terminate into a shock wave due to non-linear 
steepening. The critical amplitude of the initial wave has been determined such that any 
compressive wave with an initial amplitude greater than the critical one always develops into 
a shock wave, while an initial amplitude less than the critical one results in a decay of the 
wave. The relativistic, magnetic and radiation effects on the global behaviour of weak 
discontinuities have also been investigated and illustrated graphically. 

1. Introduction 

The recent investigations in astronomy and astrophysics have necessitated the study of 
relativistic magnetohydrodynamics and, in particular, that of non-linear wave prop- 
agation due to its several astrophysical apjAications (Johnson and McKee 1971, McKee 
and Colgate 1973, Greenberg 1975). The theory of relativistic fluids and plasmas plays 
an important role in theoretical astrophysics. Magnetohydrodynamical shock waves 
appear in the physics of the sun, of the solar system and also of the galaxies. We deem 
our analysis important for the interpretation of phenomena connected with stellar 
objects such as collapsed stars and neutron stars, because they possess magnetic fields of 
very high intensity (P10" G) frozen into the matter characterised by very high densities 
and temperatures. 

An extensive body of information on relativistic shocks is available in the published 
literature. Taub (1948) presented a theoretical foundation of relativistic shock waves. 
Hoffman and Teller (1950) developed an elegant relativistic treatment of MHD shocks. 
The pioneering works concerning wave propagation in relativistic MHD flows were done 
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by Lichnerowicz (1967a, b, 1969) and Choquet-Bruhat (1960) in the late fifties and 
early sixties. Taussing (1973) studied the problem of shock wave production in 
relativistic plasmas. Massani et a1 (1967) discussed the behaviour of relativistic shock 
waves in a hot plasma in intense magnetic fields. The weak waves are of particular 
interest because they are a special class of non-linear wave processes which can be 
treated rigorously by analytical methods. The explicit results of the analysis give some 
insight into the interaction of various mechanisms participating in the wave prop- 
agation. Kanwal (1966), McCarthy (1969) and Gopalkrishna (1977) studied the 
problem of growth and decay of relativistic hydrodynamical weak waves in perfect 
gases. Grew (1975) studied the conditions under which shocks do not form in spite of 
the quasi-linear hyperbolic systems of the basic equations. The detailed synthesis on 
the qualitative behaviour of the amplitude of relativistic weak MHD wavefronts was 
presented by Lichnerowicz (197 1) using the distribution theory of generalised 
functions. Recently, Maugin (1978) studied the propagation of infinitesimal dis- 
continuities in relativistic magnetoelastic media and discussed the conditions for the 
formation of shock waves. More recently, Ram et a1 (1980) and Ram and Singh (1980) 
discussed the growth and decay of weak discontinuities in high-temperature 
phenomena and chemically reacting relativistic fluids. The main academic interest in 
the present communication is to study the problem of growth and decay of weak waves 
in relativistic hot plasma in intense magnetic fields by using the singular surface theory 
of Maugin (1976) and to determine a critical stage when there occurs the breakdown of 
a weak wave and the consequent formation of a shock wave due to non-linear 
steepening. 

Pai (1966) has suggested that when the mean free path of radiation is very small, the 
radiative heat transfer term can be neglected except in the boundary layer region but 
the radiation stresses must be taken into account. In this papel: we assume that the 
mean free path of radiation is small enough to account for the radiation pressure and 
radiation energy, and the profiles structured by the radiant heat transfer are embedded 
in the discontinuity; pair formation, thermonuclear reactions and neutrino emissions 
are negligible (Massani et a1 1967), as their effects on the shock propagation are 
negligibly small. 

2. Basic preliminaries 

The notations used in this paper are, with a few minor exceptions, identical with those 
employed by Grot and Eringen (1966). Let V4 be Einstein-Riemann space described 
by four coordinates 

4 x m  = ( X k ,  x4) x = c t  

and equipped with a normal hyperbolic metric ds2 (signature +2) expressible in the 
form 

where go@ is the metric tensor with constant components, t is the time and c is the 
velocity of light in vacuum. The field of world velocity U", expressed as 

where 

ds2 = ga8 dx" dxP 

U " ( x @ ) = p ( v k / c ,  1) gaBU"uB = -1 

v k  = c a x k / a x 4  p = (1 - v2/c2)-1 '2 ,  
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defines the invariant derivative 

D = U" a, = (@/c) (a /a t  + v i  ai) a, = a/ax'. 

Here the range of latin indices is 1 , 2 , 3  and that of greek indices is 1 ,2 ,3 ,4 .  A dummy 
index will usually imply summation unless specified otherwise. 

The equations governing the motion of a relativistic thermodynamically perfect 
radiating magnetofluid of infinite electrical conductivity with a constant magnetic 
permeability p can be written in the form 

(PU"),, = 0 (2.1) 
T;' = O  (2.2) 
(U"ha - h"UP),a = O  U"h, = 0 (2.3) 

where 

TUP ~ o U " U B + ( p + p R + ~ p h 2 ) S u 8 - p h U h *  

s; = uuu, +g", 

w = pc '( 1 + e / c  + E R/pc + p h  2 /2pc  2, 

h2 = huh,. 

Here p, p, TU', e, h, E R  and pR respectively represent the fluid pressure, the matter 
density per unit of proper volume, the total energy momentum tensor, the internal 
energy per unit mass of the plasma, the magnetic field intensity, the radiation energy 
and radiation pressure. A comma followed by an index denotes partial differentiation 
with respect to the corresponding coordinate. In an optically thick medium under 
consideration, ER, pR and T are connected by the relation 

ER' 3pR= (URT~ 

where T is the absolute temperature and is the Stefan-Boltzmann constant, 
Projecting (2.2) along and perpendicular to U", we obtain 

~ ~ p ~ D U " + S " ~ ( p * + $ p h ~ ) , , g  - ~ . ~ U " U , h ~ h ~ - ~ . ~ h " h ~ - p h f , h ~  = O  (2.4) 

{ (c2pa)UB} ,B-  UB(p*+dph2),B +pU,.hLhB = O  (2.5) 
where 

p * = p + p R  a = f + p h 2 / p c 2  

f = I + i* /c2  i* = e + E R / p  + p * / p .  

The equations (2.4) and (2.5) respectively represent the conservation of momentum 
and energy in relativistic magnetoplasma flows with radiation. Here i* is the specific 
enthalpy and f is the index of the radiating plasma. The proper temperature T and the 
specific entropy v* of the radiating fluid satisfy the thermodynamic relation 

(2.7) c2  df = T dq* +dp*/p. 

From (2.3) and (2.4) it follows that 

U,U'hfs + hf3, = 0 

h2U$ +$Dh2-h,h*U> = O  
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c2pfhaDU” + haPT”, = 0 

Uah> + h,U> = 0. 

In view of (2.1), (2.7) and (2.9), the equation (2.5) leads to 

Dq* = 0 

(2.10) 

(2.1 1 )  

(2.12) 

which shows that the motion of the fluid under consideration will be isentropic. 
From (2.6), (2.7) and (2.12) we obtain 

[ I +  12(7 - l )RplDp - ( p / p ) [ Y  + 1 6 ( ~ -  1)RpIDp = 0 (2.13) 

where R,  = pR/p and y = cp/cv are the radiation pressure number and heat exponent of 
the plasma respectively. 

3. Compatibility conditions on a time-like singillor hypersurface 

Let Z(x”) be a time-like regular hypersurface of the space V4 with parametric equations 

x”  = $”(b‘) 7 = 1 , 2 , 3  

where b‘ are parametric coordinates of the surface. The surface 2 may be regarded as a 
surface S(t )  in space-time for which the parametric equations are 

4 
X I  = x ‘ ( b * ,  b2,  x4) x = ct. 

If Nu are the components of unit normal vector to 2 ( x ” ) ,  ni the components of the unit 
space normal to S(t )  and G is its speed of propagation, then (Thomas 1963) 

N u  = @{ni, Glc} Nu = @{ni, - G / c }  (3.1) 

where 
@ = ( 1  - G2/c2)-1’2, 

By a weak wave or a weak discontinuity we mean a time-like singular hypersurface 
2 ( x ’ )  across which the flow parameters are continuous, but their first and higher partial 
derivatives undergo finite jumps at the surface. If [ Z ]  denotes the jump in any flow 
parameter Z across 2, then the compatibility conditions due to Maugin (1976) and 
Truesdell and Toupin (1960) to be satisfied across the weak wave surface Z(x”) can be 
expressed as 
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Here ad and bd are, respectively, the components of the first and second fundamental 
covariant tensors of X; Go is the local speed of propagation of the surface S(t) ;  S is the 
generalised form of the S, derivative of Thomas and a semicolon denotes covariant 
derivative with respect to a+ Moreover, in the local instantaneous rest frame, it can be 
shown that 

4. Modes of propagation 

Using compatibility conditions for the jumps of inner parts of the equations (2.1), (2.3), 
(2.4), (2.8)-(2.11) and (2.13), we obtain 

pA"N, + Vu = 0 (4.1) 
VE" + h"A*Np -huh, - UPEBNg = O  (4.2) 

-pU'UwEPhn -pEuhn -ph'EpNg = 0 (4.3) 

E " U ~ V + E " N ~  = O  (4.4) 

h2AaN,+V~"h,-A"huhn=0 (4.5) 
c 'pfVA "ha + 6hn = 0 (4.6) 

E"U, +A"h, = O  (4.7) 

6 - (a k + 4R,p/p)u/( 1 + 4R,) = 0 (4.8) 

c2puVA " + ((1 + 4R,)6 - 4 R # ~ / p  + pE'h,}S"*N~ 

where 

A" =[U>JN* 6 = [P,slN8 * = [P.a" 

E" = [hfsJN* h, = haNu 

a i  = (P/P){Y +20(y - 1)R, + 16(y - 1)Ri)/{1+ 12(v - W?J. 

Equations (4.1)-(4.8) can be combined in the form 

(A;-&s;)A* = o  
where 

&=uc2V2-phZn/p 

Ai = (ak + p h 2 / p  -akph~/pc2fV2)SUyNJV~ +(phn/p ) [ (ak / f c2 ) -  11h"N~. 

The system (4.9) will admit non-trivial solutions iff 

[A - 46; I = 0 

which provides us with the following three modes of propagation: 

(4.9) 

(4.10) 
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u Z .  - [ U :  -4(a - a Z . / c ' ) ~ k b ~ / f ] " ~  
2p2g2(a - a$/c2)  (ii) G f s ~  = 

a: +[a:  - 4 ( ~ r - a ~ / c ~ ) a k b ~ / f l ~ ' ~  
2p2& - aZ/c2) (iii) GiM = 

where 

b i  = ph: /p  a:  = a t  + p h 2 / p  

and GOA, GOSM, GoFM are, respectively, the velocities of Alfven waves, slow magneto- 
hydrodynamic waves and fast magnetohydrodynamic waves. 

These results coincide with those of classical magnetohydrodynamics (Ram and 
Singh 1977) in the non-relativistic limit (a = 1, b:/c2 = 0, a i / c 2  = 0, p = /? = 1). When 
the magnetic field acts transversely to the direction of propagation, 6, = 0 and hence 
there is only one mode of propagation given by 

(4.11) Gz = aa/P2@(a - a : / c 2 )  

which on account of (3 .5)  takes the form 
2 2 2  2 V = a,/(c a-U,). (4.12) 

In an instantaneous rest frame, the equation (4.11) assumes the form 

G; = a: /a  

which is in full agreement with earlier results of Ram and Singh (1977) and McCarthy 
(1969) in particular cases. 

5. The growth equation 

This section is devoted to the derivation of a fundamental growth equation which will 
govern the growth and decay of a weak discontinuity during its course of propagation 
through a hot plasma in a transverse magnetic field. The medium ahead of the 
wavefront is assumed uniform and at rest with the magnetic field in the frozen state. 

(5.1) 

Differentiating the equations (2.1), (2.4), (2.8) and (2.9) with respect to x p  and 

Now we define the amplitude b of the wave W")  by the relation 

b = cA = ch"N, = cA"Nz 

where N*" = SUpN, are the space-like components of N". 

taking jumps across I; with the help of (3.2) and (3.3),  we obtain 

p ( a  + a:/c2)6(A) +pV[a-  a a ( l +  V 2 ) /  V 2 c 2 ] i U N ,  - p & ~ A ~ T ( l  + V 2 ) /  VC' 

- pcrh "S(N,) + (U :/ VC~)AS"~N,S(~N,/ V )  + (pp/ Vc2)Ah,S(h " / p >  

+ph2[(pg2+ 2a: + ph2/p)(1 + V2)/ V2c2 - 3 a : / c 2 ]  

= O  (5.2) 

where 

g 2  = (a2p*/ap2)I)*=constant. 
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In view of (4.12), the coefficient of X"N, in (5.2) vanishes and, therefore, weobtain 
the following equation to be satisfied by A 

p ( 2 ~  - az /c2)8(A)  -(pa:/ V C ~ ) [ X ; N * ~ A ; ~  + ANY ] 

+ ( U ; /  V C ~ ) A S " ~ N , S ( P N ~ /  v) - p ~ ( i  + V ~ ) - ' A N * " ~ ( N , )  

+pA2[ (pg2+  p h 2 / p  + 2af)(1+ v2)/ v 2 c 2 -  3a2/c2] 

+ (ppA/ Vc2>(1 + Vz)h,s(h"/p> 

= O  (5 .3 )  

which is the required growth equation governing the global behaviour of the amplitude 
CA of a relativistic weak wave in a dense plasma in a transverse magnetic field. In a local 
instantaneous rest frame for which 

equation (5 .3)  takes on a particularly simpler form 

ASb/St - Rb + Bb2 = 0 

where 

= -an ' / 2 a ~  ' 
A =(Go/2ae2)(20--a~/c2)/(1- G;/C') 

B = ( G o / 2 ~ f ) [ ( p g ~ + 2 ~ :  + p h ' / p ) ~ / a f  -3a?/c2] .  

(5.4) 

Here R is the mean curvature of the propagating surface S ( t )  in space-time. 

we have 
If s denotes the distance traversed by the wave along its normal trajectory in time r, 

= Go ( 5 . 5 )  

which provides us a relation s = Got, where Go is the constant speed of the wavefront 
propagating in a uniform state ahead of it in the rest frame of this uniform state. For 
non-planar waves, R # 0 and is calculated in Thomas (1963) in the form 

where Ro and KO are the values of the mean and Gaussian curvatures of the initial 
wavef ront . 

Using (5 .5 )  and (5.6) in (5.4) and solving for b in the space-time, we obtain 

where bo is the initial wave amplitude at time t = 0 and 
-1/2AGo F(t)=[( l -K1Got)( l -KzGot)]  

Here K1 and K2 are principal curvatures of the initial wavefront. 
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6. GloBa b e h h  of the wave a m p b d e  

We shall first study the effects of wave geometry on the global behaviour of the 
amplitude b ( t ) .  For a converging wave, K1 and K2 are positive so that there exists a 
finite time r* which is the least positive root of 

such that when l b o l ~  b,, 

lim b( t )  = ca 
I- I* 

where 

In this case a converging wave will form a cusp or caustic due to focusing after a finite 
time t* depending on the curvatures K1 and K2. 

If lbo( > b,, there will exist a finite critical time tc < t* given by 

lorc F(r)  dt = AGo/Blbol 

such that 

This shows that the weak wave will turn into a diffracted shock wave due to non-linear 
steepening after a finite critical time r,< r * .  

In the case of a diverging wave, K 1  and K2 are negative and hence no cusp will be 
formed. But there exists a critical value b, of the initial wave amplitude bo(bo < 0) for a 
compressive wave such that 

(i) when lbol < b,, limt+w b( t )  = 0; 
(ii) when [bo/ > b,, limr,, b(t) = 00, 

where 

b, = ( @ / A )  F ( t )  dt)-' 

Thus we conclude that compressive waves with lbol > b, will grow into a shock wave 
formed after a finite time rc given by (6.2) and those with lbol < b, will ultimately decay. 

From (6.2) and (6.3), we have 

m 

dbc - (Bb i /2A)  lo F ( t ) ( l +  IKIIGot)-' dt >O. m- (6.5) 

Equations (6.4) and (6.5) show that the critical time t, and the critical amplitude 6, 
increase with curvature effects. 
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7. Special cases 

Case I. In order to investigate relativistic and magnetic field effects on the global 
behaviour of the wave amplitude b(t) ,  we shall first study the case of a plane wave for 
which a= 0. In the non-radiative case (R, = 0) the solution (5.7) takes a simple form 

b = bo( 1 - BT/A)-' (7.1) 
where 

2 2  T = & t  N A  = ph2/pa2 r = a  / c .  

Here r and NA are dimensionless parameters for the relativistic effect and the magnetic 
effect, respectively; T is the dimensionless parameter of time. For any practical 
problem we have 0 s r < 1 and 0 s NA < 1.  The relativistic and magnetic field effects on 
the growth and decay of discontinuities are shown in figures 1-4. Figure 3 shows that 
the shock formation time increases with relativistic effects. Figures 1 ,2 ,4  show that in 
an ultra-relativistic case the magnetic field also delays the shock formation, whereas in 
the non-relativistic case as well as under low relativistic effects it accelerates the shock 
formation. This implies that there is a very interesting competition between the 

0 0.1 0.2 0.3 0.4 0.5 0 6 

T 

Flgure 1. Magnetic field effects on the growth of compressive weak discontinuities in 
non-relativistic fluids for y = 5/3. 
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T 

Figare 2. Magnetic field effects on the growth and decay of weak non-linear MHD waves in 
relativistic fluids for y = 513 and T = 0.75. 

T 

Flgme 3. Relativistic effects on the growth and decay of weak non-linear MHD waves for 
y = 513 and NA = 0.75. 
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Figure 4. Variation of the shock formation time with respect to the magnetic number under 
different relativistic effects for y = 5/3. 

magnetic field effect and relativistic effects. Figure 4 shows an interesting interaction 
between the relativistic effects and the magnetic field effects on the critical time t ,  for the 
shock formation. 

Case 11. In order to study relativistic as well as radiation effects on the growth of a 
compressive wave, we shall now consider the case of a non-planar wave for which # 0 
and K1 = Kz. In this case the solution (5.7) assumes the form 

where 

Here R, and K are dimensionless parameters for the radiation effect and the curvature 
effect respectively; T is the dimensionless parameter of time. For any practical problem 
we have 0 s R, < 1. The radiation pressure effect on the growth of a weak discontinuity 
is shown in figure 5 .  It is evident that the radiation stresses cause a decrease in the 
critical time tc for the shock formation and hence accelerate the shock formation process 
of a compressive wave. 
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1.41 

7 

Figure 5. Radiation stress effects on the growth of weak spherical non-linear waves in 
relativistic fluids for y = 5/3 and T = 0.75. 
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